MulaiMulai sekarang secara gratis

Limited data in your rows

This data sparsity can cause an issue when using techniques like K-nearest neighbors as discussed in the last chapter. KNN needs to find the k most similar users that have rated an item, but if only less than or equal to k users have given an item the rating, all ratings will be the "most similar".

In this exercise, you will count how often each movie in the user_ratings_df DataFrame has been given a rating, and then see how many have only one or two ratings.

Latihan ini adalah bagian dari kursus

Building Recommendation Engines in Python

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Count the occupied cells per column
occupied_count = user_ratings_df.____().____()
print(occupied_count)
Edit dan Jalankan Kode