MulaiMulai sekarang secara gratis

Smoothing

Smoothing can improve the signal-to-noise ratio of your image by blurring out small variations in intensity. The Gaussian filter is excellent for this: it is a circular (or spherical) smoothing kernel that weights nearby pixels higher than distant ones.

The width of the distribution is controlled by the sigma argument, with higher values leading to larger smoothing effects.

For this exercise, test the effects of applying Gaussian filters to the foot x-ray before creating a bone mask.

Latihan ini adalah bagian dari kursus

Biomedical Image Analysis in Python

Lihat Kursus

Petunjuk latihan

  • Convolve im with Gaussian filters of size sigma=1 and sigma=3.
  • Plot the "bone masks" of im, im_s1, and im_s3 (i.e., where intensities are greater than or equal to 145).

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Smooth "im" with Gaussian filters
im_s1 = ndi.gaussian_filter(____, sigma=____)
im_s3 = ____

# Draw bone masks of each image
fig, axes = plt.subplots(1,3)
axes[0].imshow(____ >= 145)
axes[1].imshow(____)
____
format_and_render_plot()
Edit dan Jalankan Kode