CommencerCommencer gratuitement

Maximization function

We saw that the EM algorithm is an iterative method between two steps: the expectation and the maximization. In the last exercise, you created the expectation function. Now, create the maximization function which takes the data frame with the probabilities and outputs the estimations of the means and proportions.

Cet exercice fait partie du cours

Mixture Models in R

Afficher le cours

Instructions

Create the function maximization by completing the sample code.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

maximization <- function(___){
  means_estimates <- data_with_probs %>%
    summarise(mean_1 = sum(x * ___) / ___(prob_cluster1),
              mean_2 = sum(x * ___) / ___(prob_cluster2)) %>% 
    as.numeric()
  props_estimates <- data_with_probs %>% 
    summarise(proportion_1 = ___(prob_cluster1),
              proportion_2 = 1 - ___) %>% 
    as.numeric()
  list(means_estimates, props_estimates)   
}
Modifier et exécuter le code