Maximization function
We saw that the EM algorithm is an iterative method between two steps: the expectation and the maximization. In the last exercise, you created the expectation
function. Now, create the maximization
function which takes the data frame with the probabilities and outputs the estimations of the means and proportions.
Cet exercice fait partie du cours
Mixture Models in R
Instructions
Create the function maximization
by completing the sample code.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
maximization <- function(___){
means_estimates <- data_with_probs %>%
summarise(mean_1 = sum(x * ___) / ___(prob_cluster1),
mean_2 = sum(x * ___) / ___(prob_cluster2)) %>%
as.numeric()
props_estimates <- data_with_probs %>%
summarise(proportion_1 = ___(prob_cluster1),
proportion_2 = 1 - ___) %>%
as.numeric()
list(means_estimates, props_estimates)
}