CommencerCommencer gratuitement

Visualizing feature importances

Your random forest classifier from earlier exercises has been fit to the telco data and is available to you as clf. Let's visualize the feature importances and get a sense for what the drivers of churn are, using matplotlib's barh to create a horizontal bar plot of feature importances.

Cet exercice fait partie du cours

Marketing Analytics: Predicting Customer Churn in Python

Afficher le cours

Instructions

  • Calculate the feature importances of clf.
  • Use plt.barh() to create a horizontal bar plot of importances.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Calculate feature importances
importances = ____.____

# Create plot
____.____(range(X.shape[1]), ____)
plt.show()
Modifier et exécuter le code