CommencerCommencer gratuitement

Tuning other hyperparameters

The power of GridSearchCV really comes into play when you're tuning multiple hyperparameters, as then the algorithm tries out all possible combinations of hyperparameters to identify the best combination. Here, you'll tune the following random forest hyperparameters:

Hyperparameter Purpose
criterion Quality of Split
max_features Number of features for best split
max_depth Max depth of tree
bootstrap Whether Bootstrap samples are used

The hyperparameter grid has been specified for you, along with a random forest classifier called clf.

Cet exercice fait partie du cours

Marketing Analytics: Predicting Customer Churn in Python

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Import GridSearchCV
from sklearn.model_selection import GridSearchCV

# Create the hyperparameter grid
param_grid = {"max_depth": [3, None],
              "max_features": [1, 3, 10],
              "bootstrap": [True, False],
              "criterion": ["gini", "entropy"]}

# Call GridSearchCV
grid_search = ____(___,___,cv=3)
Modifier et exécuter le code