Visualizing two numeric explanatory variables
The code for visualizing two numeric explanatory variables is the same as you've seen before: create a layer of the actual data points, and add a layer of the prediction points to see how they match. In the case of two numeric explanatory variables, the prediction point layer will look like a grid.
taiwan_real_estate and prediction_data are available with the square-root transformed variable sqrt_dist_to_mrt_m.
Cet exercice fait partie du cours
Intermediate Regression with statsmodels in Python
Instructions
- Using 
taiwan_real_estate, create a scatter plot ofsqrt_dist_to_mrt_mversusn_convenience, colored byprice_twd_msq. - Create an additional scatter plot of 
prediction_data, without a legend, and withmarkerset to"s"(for squares). 
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Create scatter plot of taiwan_real_estate
____
# Create scatter plot of prediction_data without legend
____
# Show the plot
plt.show()