CommencerCommencer gratuitement

PCA for feature exploration

You'll use the PCA pipeline you've built in the previous exercise to visually explore how some categorical features relate to the variance in poke_df. These categorical features (Type & Legendary) can be found in a separate DataFrame poke_cat_df.

All relevant packages and classes have been pre-loaded for you (Pipeline(), StandardScaler(), PCA())

Cet exercice fait partie du cours

Dimensionality Reduction in Python

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Build the pipeline
pipe = Pipeline([('scaler', StandardScaler()),
                 ('reducer', PCA(n_components=2))])

# Fit the pipeline to poke_df and transform the data
pc = ____

print(pc)
Modifier et exécuter le code