ComenzarEmpieza gratis

CV fine-tuning: trainer configuration

Now that you have prepared the dataset and adapted a pretrained model to the new classes, it is time to configure your trainer.

The TrainingArguments and Trainer have been loaded from the transformers library. The model (model) and dataset (dataset) have been loaded as you previously configured them.

Este ejercicio forma parte del curso

Multi-Modal Models with Hugging Face

Ver curso

Instrucciones del ejercicio

  • Adjust the learning rate to 6e-5.
  • Provide the model, training data, and test data to the Trainer instance.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

training_args = TrainingArguments(
    output_dir="dataset_finetune",
    # Adjust the learning rate
    ____,
    gradient_accumulation_steps=4,
    num_train_epochs=3,
    push_to_hub=False
)

trainer = Trainer(
    # Provide the model and datasets
    model=____,
    args=training_args,
    data_collator=data_collator,
    train_dataset=____,
    eval_dataset=____,
    processing_class=image_processor,
    compute_metrics=compute_metrics,
)
Editar y ejecutar código