CV fine-tuning: dataset prep
In this exercise, you will prepare the Stanford Cars dataset for training. This will involve using the datasets library to split the dataset and applying the preprocessing transformations. The dataset consists of 8k labeled images of 196 car models:

The dataset has been loaded as dataset. The transformations have been defined for you as transforms, and consist of renormalization and type conversion.
Este ejercicio forma parte del curso
Multi-Modal Models with Hugging Face
Instrucciones del ejercicio
- Create an 80/20 train/test split from
datasetusing the.train_test_split()method. - Apply the transformations (
transforms) todata_splits. - Plot the augmented image from the first set of pixel values in
dataset_transformed.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Create a train/test split within the HF dataset
data_splits = ____(test_size=____, seed=42)
# Apply the transformations
dataset_transformed = ____
# Plot the transformed image
plt.imshow(dataset_transformed["train"][0]["____"].permute(1, 2, 0))
plt.show()