ComenzarEmpieza gratis

CV fine-tuning: model classes

In this exercise, you will load the pretrained model, and adapt the output to accommodate a new classification of car model types from the Stanford Cars dataset instead of the 1000 classes used for the original ImageNet training. The dataset contains labelled images of cars.

The dataset has been loaded (dataset), as has AutoModelForImageClassification from transformers. The dataset has been filtered so that three model types are included.

Este ejercicio forma parte del curso

Multi-Modal Models with Hugging Face

Ver curso

Instrucciones del ejercicio

  • Obtain the new label names from the dataset
  • Add the new id2label mapping while loading the model.
  • Add the corresponding label2id mapping.
  • Add the required flag to change the number of classes.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Obtain the new label names from the dataset
labels = dataset["train"].features["____"].____

label2id, id2label = dict(), dict()
for i, label in enumerate(labels):
    label2id[label] = str(i)
    id2label[str(i)] = label

model = AutoModelForImageClassification.from_pretrained(
    "google/mobilenet_v2_1.0_224",
    num_labels=len(labels),
    # Add the id2label mapping
    id2label=____,
    # Add the corresponding label2id mapping
    label2id=____,
    # Add the required flag to change the number of classes
    ignore_mismatched_sizes=____
)
Editar y ejecutar código