Object detection
In this exercise, you will use the same flickr dataset as previously, which has 30,000 images and associated captions. Now you will find bounding boxes of objects detected by the model.

The sample image (image) and pipeline module (pipeline) have been loaded.
Este ejercicio forma parte del curso
Multi-Modal Models with Hugging Face
Instrucciones del ejercicio
- Load the
object-detectionpipeline withfacebook/detr-resnet-50pretrained model. - Find the
labelof the detected object. - Find the associated confidence
scoreof the detected object. - Find the bounding
boxcoordinates of the detected object.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Load the object-detection pipeline
pipe = pipeline("____", "____", revision="no_timm")
pred = pipe(image)
outputs = pipe(image)
for n, obj in enumerate(outputs):
# Find the detected label
label = ____
# Find the confidence score of the prediction
confidence = ____
# Obtain the bounding box coordinates
box = ____
plot_args = {"linewidth": 1, "edgecolor": colors[n], "facecolor": 'none'}
rect = patches.Rectangle((box['xmin'], box['ymin']), box['xmax']-box['xmin'], box['ymax']-box['ymin'], **plot_args)
ax.add_patch(rect)
print(f"Detected {label} with confidence {confidence:.2f} at ({box['xmin']}, {box['ymin']}) to ({box['xmax']}, {box['ymax']})")
plt.show()