ComenzarEmpieza gratis

Plot IPO timeline for all exchanges using countplot()

To create a basic visualization of the number of observations per category in a dataset, the seaborn countplot() function is usually the way to go:

seaborn.countplot(x=None, hue=None, data=None, ...)

The x parameter contains the names of the variables in the data argument, which is the DataFrame to be plotted. hue identifies an additional categorical variable with color. These are three optional parameters out of many accepted by the function; for a full list, check out the seaborn documentation.

Let's use this tool to compare the timeline of IPO activity across the three exchanges. pandas as pd, matplotlib.pyplot as plt, and seaborn as sns have been imported, and the listings DataFrame with reference column 'Exchange' is available in your workspace.

Este ejercicio forma parte del curso

Importing and Managing Financial Data in Python

Ver curso

Instrucciones del ejercicio

  • Filter listings to only include IPO years after the year 2000.
  • Convert the data in the column 'IPO Year' to integers.
  • Plot a sns.countplot() of listings using 'IPO Year' as the x variable and 'Exchange' for hue.
  • Rotate the xticks() by 45 degrees and show the result.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Select IPOs after 2000
listings = listings[____[____] > ____]

# Convert IPO Year to integer
listings['IPO Year'] = ____[____].____(____)

# Create a countplot
sns.countplot(x=____, hue=____, data=____)

# Rotate xticks and show result
plt.xticks(rotation=45)

# Show the plot
plt.show()
Editar y ejecutar código