Combining ROS & RUS
You can combine both random over-sampling (ROS) and random under-sampling (RUS) in order to balance the class distribution. You're going to re-balance the dataset such that the new dataset contains 10,000 transactions of which 30% are fraudulent.
Remember, you can always load ROSE in the console and enter ?ovun.sample
to check which arguments the function takes.
Este ejercicio forma parte del curso
Fraud Detection in R
Instrucciones del ejercicio
- Load the
ROSE
package. - Set
n_new
equal to 10,000 andfraud_fraction
to 30%. - Use both over and under-sampling.
- Check the class-balance of the under-sampled dataset.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Load ROSE
___
# Specify the desired number of cases in the balanced dataset and the fraction of fraud cases
n_new <- ___
fraud_fraction <- ___
# Combine ROS & RUS!
sampling_result <- ___(___ = ___, ___ = ___,
___ = ___, ___ = ___, p = ___, seed = 2018)
# Verify the Class-balance of the re-balanced dataset
sampled_credit <- ___
prop.table(___(___))