Nabular data and summarising by missingness
In this exercise, we are going to explore how to use nabular data to explore the variation in a variable by the missingness of another.
We are going to use the oceanbuoys dataset from naniar, and then create multiple plots of the data using facets.
This allows you to explore different layers of missingness.
Este ejercicio forma parte del curso
Dealing With Missing Data in R
Instrucciones del ejercicio
- Explore the distribution of wind east west (
wind_ew) for the missingness of air temperature usinggeom_density()and faceting by the missingness of air temperature (air_temp_c_NA). - Build upon this visualization by filling by the missingness of humidity (
humidity_NA).
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Explore the distribution of wind east west (wind_ew) for the missingness of air temperature
# using geom_density() and faceting by the missingness of air temperature (air_temp_c_NA).
___ %>%
bind_shadow(___) %>%
ggplot(aes(x = ___)) +
geom_density() +
facet_wrap(~___)
# Build upon this visualization by coloring by the missingness of humidity (humidity_NA).
___ %>%
___(___) %>%
ggplot(aes(x = ___,
color = ___)) +
geom_density() +
___(~___)