ComenzarEmpieza gratis

Further exploring more combinations of missingness

It can be useful to get a bit of extra information about the number of cases in each missing condition.

In this exercise, we are going to add information about the number of observed cases using n() inside the summarize() function.

We will then add an additional level of grouping by looking at the combination of humidity being missing (humidity_NA) and air temperature being missing (air_temp_c_NA).

Este ejercicio forma parte del curso

Dealing With Missing Data in R

Ver curso

Instrucciones del ejercicio

Using group_by() and summarize() on wind_ew:

  • Summarize by the missingness of air_temp_c_NA.
  • Summarize by missingness of air_temp_c_NA and humidity_NA.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Summarize wind_ew by the missingness of `air_temp_c_NA`
oceanbuoys %>% 
  bind_shadow() %>%
  group_by(___) %>%
  summarize(wind_ew_mean = mean(___),
            wind_ew_sd = sd(___),
            n_obs = ___)

# Summarize wind_ew by missingness of `air_temp_c_NA` and `humidity_NA`
oceanbuoys %>% 
  bind_shadow() %>%
  group_by(___, ___) %>%
  summarize(wind_ew_mean = mean(___),
            wind_ew_sd = sd(___),
            n_obs = ___)
Editar y ejecutar código