LoslegenKostenlos loslegen

Performance of a single model

Now that you have the binary vectors for the actual and predicted values of the model, you can calculate many commonly used binary classification metrics. In this exercise you will focus on:

  • accuracy: rate of correctly predicted values relative to all predictions.
  • precision: portion of predictions that the model correctly predicted as TRUE.
  • recall: portion of actual TRUE values that the model correctly recovered.

Diese Übung ist Teil des Kurses

Machine Learning in the Tidyverse

Kurs anzeigen

Anleitung zur Übung

  • Use table() to compare the validate_actual and validate_predicted values for the example model and validate data frame.
  • Calculate the accuracy.
  • Calculate the precision.
  • Calculate the recall.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

library(Metrics)

# Compare the actual & predicted performance visually using a table
table(___, ___)

# Calculate the accuracy
accuracy(___, ___)

# Calculate the precision
precision(___, ___)

# Calculate the recall
recall(___, ___)
Code bearbeiten und ausführen