LoslegenKostenlos loslegen

Interpretation of model fit

The following table displays part of the summary output of the multiple linear regression model.

Call:
lm(formula = salesThisMon ~ nItems + ... + customerDuration, data = salesData)

Residuals:
    Min      1Q  Median      3Q     Max 
-322.66  -51.26    0.60   51.28  399.10 

Coefficients:
                                Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   -2.828e+02  1.007e+01 -28.079  < 2e-16 ***
nItems                         1.470e-01  2.093e-02   7.023 2.45e-12 ***
mostFreqStoreColorado Springs -7.829e+00  4.351e+00  -1.799 0.072047 .  
mostFreqStoreColumbus          5.960e-01  3.682e+00   0.162 0.871391    
...
mostFreqCatBaby               -3.496e+00  3.469e+00  -1.008 0.313594    
mostFreqCatBakery             -9.908e+00  5.451e+00  -1.818 0.069188 .  
...   
nCats                         -9.585e-01  1.956e-01  -4.900 9.90e-07 ***
nPurch                         5.092e-01  1.513e-01   3.364 0.000773 ***
salesLast3Mon                  3.782e-01  8.480e-03  44.604  < 2e-16 ***
daysSinceLastPurch             1.712e-01  1.526e-01   1.122 0.262022    
meanItemPrice                  2.253e-01  9.168e-02   2.457 0.014034 *  
meanShoppingCartValue          2.584e-01  2.620e-02   9.861  < 2e-16 ***
customerDuration               5.708e-01  7.162e-03  79.707  < 2e-16 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 77.56 on 5095 degrees of freedom
Multiple R-squared:  0.8236,    Adjusted R-squared:  0.8227 
F-statistic: 914.9 on 26 and 5095 DF,  p-value: < 2.2e-16

Look at the model fit statistics. How much of the dependent variable's variation is explained by the explanatory variables?

Diese Übung ist Teil des Kurses

Machine Learning for Marketing Analytics in R

Kurs anzeigen

Interaktive Übung

In dieser interaktiven Übung kannst du die Theorie in die Praxis umsetzen.

Übung starten