LoslegenKostenlos loslegen

Binary classification problems

In this exercise, you will again make use of credit card data. The target variable, default, indicates whether a credit card holder defaults on his or her payment in the following period. Since there are only two options--default or not--this is a binary classification problem. While the dataset has many features, you will focus on just three: the size of the three latest credit card bills. Finally, you will compute predictions from your untrained network, outputs, and compare those the target variable, default.

The tensor of features has been loaded and is available as bill_amounts. Additionally, the constant(), float32, and keras.layers.Dense() operations are available.

Diese Übung ist Teil des Kurses

Introduction to TensorFlow in Python

Kurs anzeigen

Anleitung zur Übung

  • Define inputs as a 32-bit floating point constant tensor using bill_amounts.
  • Set dense1 to be a dense layer with 3 output nodes and a relu activation function.
  • Set dense2 to be a dense layer with 2 output nodes and a relu activation function.
  • Set the output layer to be a dense layer with a single output node and a sigmoid activation function.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Construct input layer from features
inputs = ____

# Define first dense layer
dense1 = keras.layers.Dense(____, activation='____')(inputs)

# Define second dense layer
dense2 = ____

# Define output layer
outputs = ____

# Print error for first five examples
error = default[:5] - outputs.numpy()[:5]
print(error)
Code bearbeiten und ausführen