High to low prices by region
Now you know how to sort a DataFrame, the estate agents have asked you to create a bar plot visualizing the average property price by region from largest to smallest.
regions
has been created by grouping melb
by region and calculating the average price, and preloaded for you:
regions = melb.groupby("region", as_index=False)["price"].mean()
Diese Übung ist Teil des Kurses
Interactive Data Visualization with Bokeh
Anleitung zur Übung
- Sort
regions
by price in descending order. - Create the figure, setting
x_range
equal to the"region"
column ofregions
and labeling the x- and y-axes as"Region"
and"Sales"
, respectively. - Add bar glyphs from
regions
, showing theprice
on the y-axis against eachregion
on the x-axis, and setting the width to0.9
- Update the y-axis format to display in millions of dollars with 1 decimal place.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Sort df by price in descending order
regions = regions.____("____", ascending=____)
# Create figure
fig = figure(x_range=____, x_axis_label=____, y_axis_label=____)
# Add bar glyphs
fig.vbar(x=____, top=____, width=____)
# Format the y-axis to numeric format
fig.____[____].____ = ____(____="$0.0a")
output_file(filename="sorted_barplot.html")
show(fig)