LoslegenKostenlos loslegen

Mutual information features

The credit_df data frame contains a number of continuous features. When two continuous features are correlated, they contain the same information — something called mutual information. Highly correlated features are not just redundant. They can cause problems in modeling. For instance, in regression, highly correlated features (i.e., multicollinearity) can cause nonsensical results. To get a sense of mutual information, you will create a correlation plot to identify features with mutual information.

The tidyverse and corrr packages have been loaded for you.

Diese Übung ist Teil des Kurses

Dimensionality Reduction in R

Kurs anzeigen

Anleitung zur Übung

  • Use correlate() and rplot() to create a correlation plot of the numeric features of credit_df.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Create a correlation plot
___ %>% 
  select(where(is.numeric)) %>% 
  ___() %>% 
  shave() %>% 
  ___(print_cor = TRUE) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
Code bearbeiten und ausführen