Maximization function
We saw that the EM algorithm is an iterative method between two steps: the expectation and the maximization. In the last exercise, you created the expectation function. Now, create the maximization function which takes the data frame with the probabilities and outputs the estimations of the means and proportions.
Bu egzersiz
Mixture Models in R
kursunun bir parçasıdırEgzersiz talimatları
Create the function maximization by completing the sample code.
Uygulamalı interaktif egzersiz
Bu örnek kodu tamamlayarak bu egzersizi bitirin.
maximization <- function(___){
means_estimates <- data_with_probs %>%
summarise(mean_1 = sum(x * ___) / ___(prob_cluster1),
mean_2 = sum(x * ___) / ___(prob_cluster2)) %>%
as.numeric()
props_estimates <- data_with_probs %>%
summarise(proportion_1 = ___(prob_cluster1),
proportion_2 = 1 - ___) %>%
as.numeric()
list(means_estimates, props_estimates)
}