Kernel explainer for MLPClassifier
Neural networks can be very accurate, but understanding their decisions can be challenging due to complexity. Now, you'll leverage the SHAP Kernel Explainer to interpret an MLPClassifier trained on the adult income dataset. You will explore which of the three features—age, education, or hours worked per week—is most important for predicting income according to this model.
X containing the predictors and y containing the admission decisions, along with the pre-trained MLPClassifier model, have been pre-loaded for you.
Bu egzersiz
Explainable AI in Python
kursunun bir parçasıdırEgzersiz talimatları
- Instantiate a SHAP Kernel Explainer using the MLPClassifier
modeland a k-means summary of 10 samples fromX. - Generate
shap_valuesforX. - Compute the mean absolute SHAP values to identify key factors affecting admissions.
Uygulamalı interaktif egzersiz
Bu örnek kodu tamamlayarak bu egzersizi bitirin.
import shap
# Create a SHAP Kernel Explainer
explainer = ____
# Calculate SHAP values
shap_values = ____
# Calculate mean absolute SHAP values
mean_abs_shap = ____
plt.bar(X.columns, mean_abs_shap)
plt.title('Mean Absolute SHAP Values for MLPClassifier')
plt.xticks(rotation=45)
plt.show()