Kernel explainer for MLPRegressor
Given your familiarity with the admissions dataset, you will employ SHAP's Kernel Explainer to explain an MLPRegressor trained on this data. This method will allow you to critically assess how different features impact the model's predictions and verify these insights against your existing understanding of the dataset.
X containing the predictors and y containing the admission decisions, along with the pre-trained MLPRegressor model, have been pre-loaded for you.
Bu egzersiz
Explainable AI in Python
kursunun bir parçasıdırEgzersiz talimatları
- Create a SHAP Kernel Explainer using the MLPRegressor
modeland a k-means summary of 10 samples fromX. - Generate
shap_valuesforX. - Compute the mean absolute SHAP values to identify key factors affecting admissions.
Uygulamalı interaktif egzersiz
Bu örnek kodu tamamlayarak bu egzersizi bitirin.
import shap
# Create a SHAP Kernel Explainer
explainer = ____
# Calculate SHAP values
shap_values = ____
# Calculate mean absolute SHAP values
mean_abs_shap = ____
plt.bar(X.columns, mean_abs_shap)
plt.title('Mean Absolute SHAP Values for MLPRegressor')
plt.xticks(rotation=45)
plt.show()