BaşlayınÜcretsiz Başlayın

Mutual information features

The credit_df data frame contains a number of continuous features. When two continuous features are correlated, they contain the same information — something called mutual information. Highly correlated features are not just redundant. They can cause problems in modeling. For instance, in regression, highly correlated features (i.e., multicollinearity) can cause nonsensical results. To get a sense of mutual information, you will create a correlation plot to identify features with mutual information.

The tidyverse and corrr packages have been loaded for you.

Bu egzersiz

Dimensionality Reduction in R

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Use correlate() and rplot() to create a correlation plot of the numeric features of credit_df.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Create a correlation plot
___ %>% 
  select(where(is.numeric)) %>% 
  ___() %>% 
  shave() %>% 
  ___(print_cor = TRUE) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
Kodu Düzenle ve Çalıştır