ComeçarComece de graça

Plotting distributions

Understanding how both discrete (e.g. binomial) and continuous (e.g. normal) probability distributions play a role in A/B testing enables us to gain additional visual insights into the nature of the data and deeper conceptual understanding of the theories that power the statistical frameworks of online experimentation.

Of great importance are two distributions: the binomial and the normal distributions. Follow the instructions to create plots and explore their parameters.

Este exercício faz parte do curso

A/B Testing in Python

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

from scipy.stats import binom 

# Plot a binomial distribution
p = ____
n = ____ 

x = np.arange(n*p - 100, n*p + 100) 
binom_a = ____.____(____, ____, ____)

plt.bar(x, binom_a)
plt.xlabel('Purchased')
plt.ylabel('PMF')
plt.show()
Editar e executar o código