Aan de slagGa gratis aan de slag

Expectation function

So far, you have learned how the Expectation-Maximization algorithm is used to estimate the parameters of two Gaussian distributions with both sd equal 1. The aim of this exercise is to create the function expectation, which generalizes the step of estimating the probabilities when we know the means, proportions and the sds.

Deze oefening maakt deel uit van de cursus

Mixture Models in R

Cursus bekijken

Oefeninstructies

Create the function expectation by completing the sample code. Observe that we are now considering the standard deviations of each cluster as its fourth parameter.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

expectation <- ___(___, means, proportions, ___){
  # Estimate the probabilities
  exp_data <- data %>% 
    mutate(prob_from_cluster1 = ___[1] * dnorm(x, mean = means[1], sd = ___[1]),
           prob_from_cluster2 = ___[2] * dnorm(x, mean = means[2], sd = ___[2]),
           prob_cluster1 = prob_from_cluster1/(prob_from_cluster1 + prob_from_cluster2),
           prob_cluster2 = prob_from_cluster2/(prob_from_cluster1 + prob_from_cluster2)) %>% 
    select(x, ___, ___)
    
  # Return data with probabilities
  return(exp_data)
}
Code bewerken en uitvoeren