Aan de slagGa gratis aan de slag

Crimes data with `flexmix`

Count data is everywhere, ranging from the products bought by the customers in a shop to the number of interactions a group of users have on Twitter. Being able to extract valuable information as subpopulation with similar behavior is essential to several applications. Poisson mixture models (PMM) are a convenient tool to cluster count data.

The objectives of this lesson are (1) to explore the dataset, (2) to apply PMM using a statistical criterion to select the number of clusters, (3) to analyze the parameters of the model and (4) to illustrate how the communities are grouped depending on the level of crimes

Deze oefening maakt deel uit van de cursus

Mixture Models in R

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Check the dimension
___(crimes)

# Check with glimpse
___(crimes)

# Transform into a matrix, without community
matrix_crimes <- crimes %>%
  select(-___) %>%  
  ___()

# Check the first values
___(matrix_crimes)
Code bewerken en uitvoeren