Visualize the clusters
Until this point, we have everything required to plot the observations together with the ellipses representing the clusters.
Also, if we want to assign each observation to either one of the two cluster, we can use the function clusters() and compare the results with the real labels. Just to remind you, when we used only the variable Weight to cluster the data, we correctly predicted 4500 females and 4556 males. Let's see if we could separate better the clusters when an additional variable is incorporated.
Deze oefening maakt deel uit van de cursus
Mixture Models in R
Oefeninstructies
- Use the
geom_point()to make the scatterplot forWeightandBMI. Add to this plot the two ellipses saved inellipses_comp_numberwith the functiongeom_path(). - Be aware that the ellipses should be transformed into a data frame.
- Colour the cluster 1 in red and the cluster 2 in blue.
- Estimate the frequency table for the real labels stored in the variable
Genderversus the predicted ones estimated byclusters.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Plot the ellipses
gender %>%
ggplot(aes(x = ___, y = ___)) + ___()+
geom_path(data = data.frame(ellipse_comp_1), aes(x=x,y=y), col = "___") +
geom_path(data = data.frame(ellipse_comp_2), aes(x=x,y=y), col = "___")
# Check the assignments
table(gender$Gender, clusters(fit_with_cov))