Aan de slagGa gratis aan de slag

Adjust model complexity

To make good predictions, you need to adjust the complexity of your model. Simple models can only represent simple data structures, while complex models can represent fine-grained data structures.

In this exercise, you are going to create trees of different complexities by altering the hyperparameters of a regression tree.

The training data chocolate_train is pre-loaded in your workspace.

Deze oefening maakt deel uit van de cursus

Machine Learning with Tree-Based Models in R

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Create a model having only one split
chocolate_model <- ___(___) %>% 
		set_mode("regression") %>%
		set_engine("rpart") %>% 
		fit(final_grade ~ ., data = chocolate_train)

chocolate_model
Code bewerken en uitvoeren