Aan de slagGa gratis aan de slag

Pick the winner

Once tuning has been performed, it's time to pick the optimal hyperparameters from the results and build the final model. Two helpers from tidymodels come in handy:

The function select_best() extracts the optimal hyperparameters from a tuning results tibble, and finalize_model() plugs these results into the specification, replacing the placeholders.

It's your turn to try this using the results of the last exercise! The objects tune_spec, tune_results, and customers are still loaded.

Deze oefening maakt deel uit van de cursus

Machine Learning with Tree-Based Models in R

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Select the parameters that perform best
final_params <- ___

final_params
Code bewerken en uitvoeren