Set the hyperparameter grid of RF
In this exercise, you'll manually set the grid of hyperparameters that will be used to tune rf's hyperparameters and find the optimal regressor. For this purpose, you will be constructing a grid of hyperparameters and tune the number of estimators, the maximum number of features used when splitting each node and the minimum number of samples (or fraction) per leaf.
Deze oefening maakt deel uit van de cursus
Machine Learning with Tree-Based Models in Python
Oefeninstructies
Define a grid of hyperparameters corresponding to a Python dictionary called
params_rfwith:the key
'n_estimators'set to a list of values 100, 350, 500the key
'max_features'set to a list of values 'log2', 'auto', 'sqrt'the key
'min_samples_leaf'set to a list of values 2, 10, 30
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Define the dictionary 'params_rf'
params_rf = ____