Regression with SGB
As in the exercises from the previous lesson, you'll be working with the Bike Sharing Demand dataset. In the following set of exercises, you'll solve this bike count regression problem using stochastic gradient boosting.
Deze oefening maakt deel uit van de cursus
Machine Learning with Tree-Based Models in Python
Oefeninstructies
Instantiate a Stochastic Gradient Boosting Regressor (SGBR) and set:
max_depthto 4 andn_estimatorsto 200,subsampleto 0.9, andmax_featuresto 0.75.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Import GradientBoostingRegressor
from sklearn.ensemble import GradientBoostingRegressor
# Instantiate sgbr
sgbr = ____(max_depth=____,
subsample=____,
max_features=____,
n_estimators=____,
random_state=2)