Evaluate the regression tree
In this exercise, you will evaluate the test set performance of dt using the Root Mean Squared Error (RMSE) metric. The RMSE of a model measures, on average, how much the model's predictions differ from the actual labels. The RMSE of a model can be obtained by computing the square root of the model's Mean Squared Error (MSE).
The features matrix X_test, the array y_test, as well as the decision tree regressor dt that you trained in the previous exercise are available in your workspace.
Deze oefening maakt deel uit van de cursus
Machine Learning with Tree-Based Models in Python
Oefeninstructies
- Import the function
mean_squared_errorasMSEfromsklearn.metrics. - Predict the test set labels and assign the output to
y_pred. - Compute the test set MSE by calling
MSEand assign the result tomse_dt. - Compute the test set RMSE and assign it to
rmse_dt.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Import mean_squared_error from sklearn.metrics as MSE
from ____.____ import ____ as ____
# Compute y_pred
____ = ____.____(____)
# Compute mse_dt
____ = ____(____, ____)
# Compute rmse_dt
____ = ____
# Print rmse_dt
print("Test set RMSE of dt: {:.2f}".format(rmse_dt))