Aan de slagGa gratis aan de slag

Define the GB regressor

You'll now revisit the Bike Sharing Demand dataset that was introduced in the previous chapter. Recall that your task is to predict the bike rental demand using historical weather data from the Capital Bikeshare program in Washington, D.C.. For this purpose, you'll be using a gradient boosting regressor.

As a first step, you'll start by instantiating a gradient boosting regressor which you will train in the next exercise.

Deze oefening maakt deel uit van de cursus

Machine Learning with Tree-Based Models in Python

Cursus bekijken

Oefeninstructies

  • Import GradientBoostingRegressor from sklearn.ensemble.

  • Instantiate a gradient boosting regressor by setting the parameters:

    • max_depth to 4

    • n_estimators to 200

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Import GradientBoostingRegressor
____

# Instantiate gb
gb = ____(____=____, 
            ____=____,
            random_state=2)
Code bewerken en uitvoeren