Define the GB regressor
You'll now revisit the Bike Sharing Demand dataset that was introduced in the previous chapter. Recall that your task is to predict the bike rental demand using historical weather data from the Capital Bikeshare program in Washington, D.C.. For this purpose, you'll be using a gradient boosting regressor.
As a first step, you'll start by instantiating a gradient boosting regressor which you will train in the next exercise.
Deze oefening maakt deel uit van de cursus
Machine Learning with Tree-Based Models in Python
Oefeninstructies
Import
GradientBoostingRegressorfromsklearn.ensemble.Instantiate a gradient boosting regressor by setting the parameters:
max_depthto 4n_estimatorsto 200
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Import GradientBoostingRegressor
____
# Instantiate gb
gb = ____(____=____,
____=____,
random_state=2)