Train an RF regressor
In the following exercises you'll predict bike rental demand in the Capital Bikeshare program in Washington, D.C using historical weather data from the Bike Sharing Demand dataset available through Kaggle. For this purpose, you will be using the random forests algorithm. As a first step, you'll define a random forests regressor and fit it to the training set.
The dataset is processed for you and split into 80% train and 20% test. The features matrix X_train and the array y_train are available in your workspace.
Deze oefening maakt deel uit van de cursus
Machine Learning with Tree-Based Models in Python
Oefeninstructies
Import
RandomForestRegressorfromsklearn.ensemble.Instantiate a
RandomForestRegressorcalledrfconsisting of 25 trees.Fit
rfto the training set.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Import RandomForestRegressor
____
# Instantiate rf
rf = ____(n_estimators=____,
random_state=2)
# Fit rf to the training set
____.____(____, ____)