Aan de slagGa gratis aan de slag

Augmenting your data

From the results of glance(), you learned that using the available features the linear model fits well with an adjusted \(R^2\) of 0.99. The augment() function can help you explore this fit by appending the predictions to the original data.

Here you will leverage this to compare the predicted values of life_expectancy with the original ones based on the year feature.

Deze oefening maakt deel uit van de cursus

Machine Learning in the Tidyverse

Cursus bekijken

Oefeninstructies

  • Build the augmented data frame algeria_fitted using augment().
  • Visualize the fit of the model with respect to year by plotting both life_expectancy as points and .fitted as a line.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Build the augmented data frame
algeria_fitted <- ___

# Compare the predicted values with the actual values of life expectancy
algeria_fitted %>% 
  ggplot(aes(x = ___)) +
  geom_point(aes(y = ___)) + 
  geom_line(aes(y = ___), color = "red")
Code bewerken en uitvoeren