The sigmoid and softmax functions
The sigmoid and softmax functions are key activation functions in deep learning, often used as the final step in a neural network.
- Sigmoid is for binary classification
- Softmax is for multi-class classification
Given a pre-activation output tensor from a network, apply the appropriate activation function to obtain the final output.
torch.nn has already been imported as nn.
Deze oefening maakt deel uit van de cursus
Introduction to Deep Learning with PyTorch
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
input_tensor = torch.tensor([[2.4]])
# Create a sigmoid function and apply it on input_tensor
sigmoid = nn.____()
probability = ____(____)
print(probability)