Aan de slagGa gratis aan de slag

Implementing random search

Hyperparameter search is a computationally costly approach to experiment with different hyperparameter values. However, it can lead to performance improvements. In this exercise, you will implement a random search algorithm.

You will randomly sample 10 values of the learning rate and momentum from the uniform distribution. To do so, you will use the np.random.uniform() function.

numpy package has already been imported as np, and a plot_hyperparameter_search() function has been created to visualize your results.

Deze oefening maakt deel uit van de cursus

Introduction to Deep Learning with PyTorch

Cursus bekijken

Oefeninstructies

  • Randomly sample a learning rate factor between 2 and 4 so that the learning rate (lr) is bounded between \(10^{-2}\) and \(10^{-4}\).
  • Randomly sample a momentum between 0.85 and 0.99.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

values = []
for idx in range(10):
    # Randomly sample a learning rate factor between 2 and 4
    factor = ____
    lr = 10 ** -factor
    
    # Randomly select a momentum between 0.85 and 0.99
    momentum = ____
    
    values.append((lr, momentum))
       
plot_hyperparameter_search(values)
Code bewerken en uitvoeren