ARIMA Forecasting
Before we build an ensemble model we need an actual time series forecast of the demand itself so we can average the forecasts. The training data object MET_hi is saved in your workspace as well as the validation data MET_hi_v.
Deze oefening maakt deel uit van de cursus
Forecasting Product Demand in R
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Build an ARIMA model using the auto.arima function
MET_hi_model_arima <- ___(___)
# Forecast the ARIMA model you just built above
for_MET_hi <- ___(___, h = ___)