Aan de slagGa gratis aan de slag

Limited data in your rows

This data sparsity can cause an issue when using techniques like K-nearest neighbors as discussed in the last chapter. KNN needs to find the k most similar users that have rated an item, but if only less than or equal to k users have given an item the rating, all ratings will be the "most similar".

In this exercise, you will count how often each movie in the user_ratings_df DataFrame has been given a rating, and then see how many have only one or two ratings.

Deze oefening maakt deel uit van de cursus

Building Recommendation Engines in Python

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Count the occupied cells per column
occupied_count = user_ratings_df.____().____()
print(occupied_count)
Code bewerken en uitvoeren