Tuning an RBF kernel SVM
In this exercise you will build a tuned RBF kernel SVM for the given training dataset (available in dataframe trainset) and calculate the accuracy on the test dataset (available in data frame testset). You will then plot the tuned decision boundary against the test dataset.
Questo esercizio fa parte del corso
Support Vector Machines in R
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
#tune model
tune_out <- ___(x = trainset[, -3], y = trainset[, 3],
gamma = 5*10^(-2:2),
cost = c(0.01, 0.1, 1, 10, 100),
type = "C-classification", kernel = ___)