IniziaInizia gratis

SVM with polynomial kernel

In this exercise you will build a SVM with a quadratic kernel (polynomial of degree 2) for the radially separable dataset you created earlier in this chapter. You will then calculate the training and test accuracies and create a plot of the model using the built in plot() function. The training and test datasets are available in the dataframes trainset and testset, and the e1071 library has been preloaded.

Questo esercizio fa parte del corso

Support Vector Machines in R

Visualizza il corso

Istruzioni dell'esercizio

  • Build SVM model on the training data using a polynomial kernel of degree 2.
  • Calculate training and test accuracy for the given training/test partition.
  • Plot the model against the training data.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

svm_model<- 
    svm(y ~ ., data = trainset, type = "C-classification", 
        kernel = ___, degree = ___)

#measure training and test accuracy
pred_train <- predict(svm_model, ___)
mean(pred_train == ___$y)
pred_test <- predict(svm_model, ___)
mean(pred_test == ___$y)

#plot
plot(___, trainset)
Modifica ed esegui il codice