IniziaInizia gratis

ROC curve

Let's now create an ROC curve for our random forest classifier. The first step is to calculate the predicted probabilities output by the classifier for each label using its .predict_proba() method. Then, you can use the roc_curve function from sklearn.metrics to compute the false positive rate and true positive rate, which you can then plot using matplotlib.

A RandomForestClassifier with a training set size of 70% has been fit to the data and is available in your workspace as clf.

Questo esercizio fa parte del corso

Marketing Analytics: Predicting Customer Churn in Python

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Generate the probabilities
y_pred_prob = ____.____(____)[:, 1]
Modifica ed esegui il codice