IniziaInizia gratis

Evaluate a random forest model

Similar to the linear regression model, you will use the MAE metric to evaluate the performance of the random forest model.

Questo esercizio fa parte del corso

Machine Learning in the Tidyverse

Visualizza il corso

Istruzioni dell'esercizio

  • Calculate the MAE by comparing the actual with the predicted values for the validate data and assign it to the validate_mae column.
  • Print the validate_mae column (note how they vary).
  • Calculate the mean of this column.

Note: The actual values of the validate fold (validate_actual) has already been added to your cv_data data frame.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

library(ranger)

# Calculate validate MAE for each fold
cv_eval_rf <- cv_prep_rf %>% 
  mutate(validate_mae = map2_dbl(___, ___, ~mae(actual = .x, predicted = .y)))

# Print the validate_mae column
___

# Calculate the mean of validate_mae column
___
Modifica ed esegui il codice