IniziaInizia gratis

Predicting using a classification model

Now that you have fit your classifier, let's use it to predict the type of flower (or class) for some newly-collected flowers.

Information about petal width and length for several new flowers is stored in the variable targets. Using the classifier you fit, you'll predict the type of each flower.

Questo esercizio fa parte del corso

Machine Learning for Time Series Data in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Predict the flower type using the array X_predict.
  • Run the given code to visualize the predictions.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Create input array
X_predict = targets[['petal length (cm)', 'petal width (cm)']]

# Predict with the model
predictions = ____
print(predictions)

# Visualize predictions and actual values
plt.scatter(X_predict['petal length (cm)'], X_predict['petal width (cm)'],
            c=predictions, cmap=plt.cm.coolwarm)
plt.title("Predicted class values")
plt.show()
Modifica ed esegui il codice