IniziaInizia gratis

Experimenting with dropout

Dropout helps prevent overfitting by randomly setting some output values to zero during training. In this exercise, you'll build a simple neural network with dropout and observe how it behaves in training and evaluation modes.

torch.nn package is preloaded as nn, and features is already defined for you.

Questo esercizio fa parte del corso

Introduction to Deep Learning with PyTorch

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Model with Dropout
model = nn.Sequential(
    nn.Linear(8, 6),
    nn.Linear(6, 4),
    ____)

# Forward pass in training mode (Dropout active)
model.____
output_train = ____
Modifica ed esegui il codice