IniziaInizia gratis

Calculating accuracy using torchmetrics

Tracking accuracy during training helps identify the best-performing epoch.

In this exercise, you'll use torchmetrics to calculate accuracy on a facemask dataset with three classes. The plot_errors function will highlight misclassified samples, helping you analyze model errors.

torchmetrics package is already imported. Model outputs are softmax probabilities, and labels are one-hot encoded vectors.

Questo esercizio fa parte del corso

Introduction to Deep Learning with PyTorch

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Create accuracy metric
metric = torchmetrics.____(____, ____)
for features, labels in dataloader:
    outputs = model(features)
  
    # Calculate accuracy over the batch
    metric.____(____, ____)
Modifica ed esegui il codice