Forward propagation in a deeper network
You now have a model with 2 hidden layers. The values for an input data point are shown inside the input nodes. The weights are shown on the edges/lines. What prediction would this model make on this data point?
Assume the activation function at each node is the identity function. That is, each node's output will be the same as its input. So the value of the bottom node in the first hidden layer is -1, and not 0, as it would be if the ReLU activation function was used.

Questo esercizio fa parte del corso
Introduction to Deep Learning in Python
Esercizio pratico interattivo
Passa dalla teoria alla pratica con uno dei nostri esercizi interattivi
Inizia esercizio