IniziaInizia gratis

Seasonal ACF and PACF

Below is a time series showing the estimated number of water consumers in London. By eye you can't see any obvious seasonal pattern, however your eyes aren't the best tools you have.

In this exercise you will use the ACF and PACF to test this data for seasonality. You can see from the plot above that the time series isn't stationary, so you should probably detrend it. You will detrend it by subtracting the moving average. Remember that you could use a window size of any value bigger than the likely period.

The plot_acf() function has been imported and the time series has been loaded in as water.

Questo esercizio fa parte del corso

ARIMA Models in Python

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Create figure and subplot
fig, ax1 = plt.subplots()

# Plot the ACF on ax1
plot_acf(____, ____, zero=False,  ax=ax1)

# Show figure
plt.show()
Modifica ed esegui il codice