MulaiMulai sekarang secara gratis

Shadow price and slack exercise pt2

In this exercise you are working on the production plan for a company over the next 4 months. Your goal is to determine how much should be produced to minimize the production (fixed + variable), and storage costs while meeting the customers demand. The are constraints on the production capacity and demand each month.

Latihan ini adalah bagian dari kursus

Supply Chain Analytics in Python

Lihat Kursus

Petunjuk latihan

Complete the code, near the bottom of the sample code, to create a Pandas DataFrame that shows the slack of the constraints.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

model = LpProblem("Production Planning", LpMinimize)
time = [1, 2, 3, 4]
s = LpVariable.dicts("stock_in", [0, 1, 2, 3, 4], lowBound=0, cat="Integer")
x = LpVariable.dicts("prod_in", time, lowBound=0, cat="Integer")
y = LpVariable.dicts("plant_on_", time, lowBound=0, cat="Binary")
model += lpSum([d.loc[t,"unit_prod"]*x[t] + d.loc[t,"unit_inv"]*s[t] 
                + d.loc[t,"fixed_setup"]*y[t] for t in time])
s[0] = 100
for t in time:
    model += s[t-1] + x[t] == d.loc[t,"demand"] + s[t]
    model += x[t] <= d.loc[t,"prod_cap"]*y[t]
model.solve()

# Print the Constraint Slack
o = [{'name':name, 'slack':____} 
     for ____, c in ____]
print(____)
Edit dan Jalankan Kode